Transcription factors Nrf2 and NF-κB contribute to inflammation and apoptosis induced by intestinal ischemia-reperfusion in mice

نویسندگان

  • Qing-Tao Meng
  • Rong Chen
  • Cheng Chen
  • Ke Su
  • Wei Li
  • Ling-Hua Tang
  • Hui-Min Liu
  • Rui Xue
  • Qian Sun
  • Yan Leng
  • Jia-Bao Hou
  • Yang Wu
  • Zhong-Yuan Xia
چکیده

Intestinal ischemia/reperfusion (IIR) is a common pathological event associated with intestinal injury and apoptosis with high mortality. Nuclear factor (NF)-E2-related factor-2 (Nrf2) is a key transcription factor that interacts with NF-κB and has a vital anti-inflammatory effect. However, whether Nrf2 has a role in IIR-induced apoptosis and the possible underlining mechanisms, such as modulation of the inflammation regulation pathway, have remained to be fully elucidated. In the present study, IIR was identified to cause significant intestinal injury and apoptosis, with high expression levels of inflammatory cytokines, as well as the apoptotic proteins B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax) and caspase-3, while simultaneously decreasing the protein levels of Bcl-2. The effect was more pronounced after pretreatment of the animals with all-trans retinoic acid or brusatol, potent inhibitors of Nrf2. t-Butylhydroquinone, an Nrf2 activator, significantly attenuated IIR-induced intestinal injury and apoptosis, with inhibition of the overexpression of the inflammatory cytokines, Bax and caspase-3 protein and partial restoration of Bcl-2 protein expression. Taken together, these results indicated that increased Nrf2 expression reduced IIR-induced intestinal apoptosis and that the protective function of Nrf2 may be based on its anti-inflammatory effects through the inhibition of the NF-κB pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of adenosine injection after of brain ischemia reperfusion injury on gene expression of NF-kB/p65 and activity level of ROS in male Wistar rats

Background: Unit of p65 is one of the subunits of NF-κB and its phosphorylation by stress oxidative causes activation of NF-κB. The aim of present study was to investigate the effects of adenosine injection after brain ischemia reperfusion injury on gene expression of NF-κB /p65 and Reactive Oxygen Species (ROS) in hippocampus tissue of male wistar rats. Methods: 40 male wistar rats were rando...

متن کامل

Ozone therapy could attenuate tubulointerstitial injury in adenine-induced CKD rats by mediating Nrf2 and NF-κB

Objective(s): This study aims to determine the effects of ozone therapy on restoring impaired Nrf2 activation to ameliorate chronic tubulointerstitial injury in rats with adenine-induced CKD. Materials and Methods: Sprague–Dawley rats were fed with 0.75% adenine-containing diet to induce CKD and chronic tubulointerstitial injury. Ozone therapy was administered by rectal insufflation. After 4 we...

متن کامل

Effects of Tert-Butylhydroquinone on Intestinal Inflammatory Response and Apoptosis following Traumatic Brain Injury in Mice

Traumatic brain injury (TBI) can induce intestinal inflammatory response and mucosal injury. Antioxidant transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) has been shown in our previous studies to prevent oxidative stress and inflammatory response in gut after TBI. The objective of this study was to test whether tert-butylhydroquinone (tBHQ), an Nrf2 inducer, can protect a...

متن کامل

Dimethyl itaconate protects against lipopolysaccharide-induced endometritis by inhibition of TLR4/NF-κB and activation of Nrf2/HO-1 signaling pathway in mice

Objective(s): Endometritis is the inflammation of the uterine lining that is associated with infertility. It affects milk production and reproductive performance and leads to huge economic losses in dairy cows. Dimethyl itaconate (DI), a promising chemical agent, has recently been proved to have multiple health-promoting effects. However, the effects of DI on endometri...

متن کامل

15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner

Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2017